## **(2)**

## I-1058

## M.A./M.Sc. (Final) Examination, 2020 MATHEMATICS

Paper - VIII

(Operations Research)

Time Allowed: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 36

**Note**: Attempt any five questions. All questions carry equal marks.

- **Q. 1.** Define operation research and discuss the importance of OR in decision making.
- Q. 2. Solve by simplex method:

Maximize 
$$z = 5x_1 + 10x_2 + 8x_3$$

subject to constraints

$$3x_1 + 5x_2 + 2x_3 \le 60$$

$$4x_1 + 4x_2 + 4x_3 \le 72$$

$$2x_1 + 4x_2 + 5x_3 \le 100$$

and  $x_1, x_2, x_3 \ge 0$ 

Q. 3. Obtain the dual of the following L.P. problem :

Maximize 
$$z = x_1 - 2x_2 + 3x_3$$

subject to constraints

$$-2x_1 + x_2 + 3x_3 = 2$$

$$2x_1 + 3x_2 + 4x_3 = 1$$

and 
$$x_1, x_2, x_3 \ge 0$$

Q. 4. Solve the given L.P.P. and find the optimal

Maximize  $z = 3x_1 + 2x_2$ 

subject to

solution:

$$2x_1 + x_2 \le 100$$

$$x_1 + x_2 \le 80$$

$$x_1 \le 40$$

and 
$$x_1, x_2 \ge 0$$

Q. 5. What is game theory? Discuss its importance to

business decisions.

Q. 6. Describe the transportation problem. Distinguish between transportation model and assignment model.

- **Q. 7.** What is goal programming? Distinguish it from linear programming.
- Q. 8. Solve the following game:

Player B
$$B_1 \quad B_2$$
Player A
$$A_1 \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix}$$

**Q. 9.** Use graphical method to solve the L.P.P. :

Maximize  $z = 45x_1 + 80x_2$ 

subject to

$$5x_1 + 20x_2 \le 400$$

$$10x_1 + 15x_2 \le 450$$

and 
$$x_1 \ge 0$$
,  $x_2 \ge 0$ 

- Q. 10. Explain the following:
  - i) Indecomposable and decomposable economics
  - (ii) Petroleum refinery operations